
1
Representation

In this chapter we discuss the representation of images, covering basic notation and

information about images together with a discussion of standard image types and image

formats.We endwith a practical section, introducingMatlab’s facilities for reading, writing,

querying, converting and displaying images of different image types and formats.

1.1 What is an image?

Adigital image can be considered as a discrete representation of data possessing both spatial

(layout) and intensity (colour) information. As we shall see in Chapter 5, we can also

consider treating an image as a multidimensional signal.

1.1.1 Image layout

The two-dimensional (2-D) discrete, digital image Iðm; nÞ represents the response of some

sensor (or simply a value of some interest) at a series of fixed positions

(m ¼ 1; 2; . . . ;M; n ¼ 1; 2; . . . ;N) in 2-D Cartesian coordinates and is derived from the

2-D continuous spatial signal Iðx; yÞ through a sampling process frequently referred to as

discretization. Discretization occurs naturally with certain types of imaging sensor (such as

CCD cameras) and basically effects a local averaging of the continuous signal over some

small (typically square) region in the receiving domain.

The indices m and n respectively designate the rows and columns of the image. The

individual picture elements or pixels of the image are thus referred to by their 2-D ðm; nÞ
index. Following the Matlab� convention, Iðm; nÞ denotes the response of the pixel

located at the mth row and nth column starting from a top-left image origin (see

Figure 1.1). In other imaging systems, a column–row convention may be used and the

image origin in use may also vary.

Although the images we consider in this book will be discrete, it is often theoretically

convenient to treat an image as a continuous spatial signal: Iðx; yÞ. In particular, this

sometimes allows us to make more natural use of the powerful techniques of integral and

differential calculus to understand properties of images and to effectively manipulate and

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab

Chris Solomon and Toby Breckon

� 2011 John Wiley & Sons, Ltd

CO
PYRIG

HTED
 M

ATERIA
L



process them. Mathematical analysis of discrete images generally leads to a linear algebraic

formulation which is better in some instances.

The individual pixel values in most images do actually correspond to some physical

response in real 2-D space (e.g. the optical intensity received at the image plane of a camera

or the ultrasound intensity at a transceiver). However, we are also free to consider images in

abstract spaces where the coordinates correspond to something other than physical space

and we may also extend the notion of an image to three or more dimensions. For example,

medical imaging applications sometimes consider full three-dimensional (3-D) recon-

struction of internal organs and a time sequence of such images (such as a beating heart) can

be treated (if we wish) as a single four-dimensional (4-D) image in which three coordinates

are spatial and the other corresponds to time. When we consider 3-D imaging we are often

discussing spatial volumes represented by the image. In this instance, such 3-D pixels are

denoted as voxels (volumetric pixels) representing the smallest spatial location in the 3-D

volume as opposed to the conventional 2-D image.

Throughout this book we will usually consider 2-D digital images, but much of our

discussion will be relevant to images in higher dimensions.

1.1.2 Image colour

An image contains one or more colour channels that define the intensity or colour at a

particular pixel location Iðm; nÞ.
In the simplest case, each pixel location only contains a single numerical value

representing the signal level at that point in the image. The conversion from this set of

numbers to an actual (displayed) image is achieved through a colour map. A colour map

assigns a specific shade of colour to each numerical level in the image to give a visual

representation of the data. The most common colour map is the greyscale, which assigns

all shades of grey from black (zero) to white (maximum) according to the signal level. The

Figure 1.1 The 2-D Cartesian coordinate space of an M x N digital image

2 CH 1 REPRESENTATION



greyscale is particularly well suited to intensity images, namely images which express only

the intensity of the signal as a single value at each point in the region.

In certain instances, it can be better to display intensity images using a false-colour map.

One of the main motives behind the use of false-colour display rests on the fact that the

human visual system is only sensitive to approximately 40 shades of grey in the range from

black to white, whereas our sensitivity to colour is much finer. False colour can also serve to

accentuate or delineate certain features or structures, making them easier to identify for the

human observer. This approach is often taken in medical and astronomical images.

Figure 1.2 shows an astronomical intensity image displayed using both greyscale and a

particular false-colour map. In this example the jet colour map (as defined in Matlab) has

been used to highlight the structure andfiner detail of the image to the human viewer using a

linear colour scale ranging from dark blue (low intensity values) to dark red (high intensity

values). The definition of colour maps, i.e. assigning colours to numerical values, can be

done in any way which the user finds meaningful or useful. Although the mapping between

the numerical intensity value and the colour or greyscale shade is typically linear, there are

situations inwhich a nonlinearmapping between them ismore appropriate. Such nonlinear

mappings are discussed in Chapter 4.

In addition to greyscale images where we have a single numerical value at each

pixel location, we also have true colour images where the full spectrum of colours can

be represented as a triplet vector, typically the (R,G,B) components at each pixel

location. Here, the colour is represented as a linear combination of the basis colours or

values and the image may be considered as consisting of three 2-D planes. Other

representations of colour are also possible and used quite widely, such as the (H,S,V)

(hue, saturation and value (or intensity)). In this representation, the intensity V of the

colour is decoupled from the chromatic information, which is contained within the H

and S components (see Section 1.4.2).

1.2 Resolution and quantization

The size of the 2-D pixel grid together with the data size stored for each individual image

pixel determines the spatial resolution and colour quantization of the image.

Figure 1.2 Example of grayscale (left) and false colour (right) image display (See colour plate section

for colour version)

1.2 RESOLUTION AND QUANTIZATION 3



The representational power (or size) of an image is defined by its resolution. The

resolution of an image source (e.g. a camera) can be specified in terms of three quantities:

. Spatial resolution The column (C) by row (R) dimensions of the image define the

numberofpixels used to cover the visual space capturedby the image.This relates to the

sampling of the image signal and is sometimes referred to as the pixel or digital

resolution of the image. It is commonly quoted as C�R (e.g. 640� 480, 800� 600,

1024� 768, etc.)

. Temporal resolution For a continuous capture system such as video, this is the number of

images captured in a given time period. It is commonly quoted in frames per second

(fps), where each individual image is referred to as a video frame (e.g. commonly

broadcast TV operates at 25 fps; 25–30 fps is suitable for most visual surveillance; higher

frame-rate cameras are available for specialist science/engineering capture).

. Bit resolution This defines the number of possible intensity/colour values that a pixel

may have and relates to the quantization of the image information. For instance a binary

image has just two colours (black or white), a grey-scale image commonly has 256

different grey levels ranging from black to white whilst for a colour image it depends on

the colour range in use. The bit resolution is commonly quoted as the number of binary

bits required for storage at a given quantization level, e.g. binary is 2 bit, grey-scale is 8 bit

and colour (most commonly) is 24 bit. The range of values a pixel may take is often

referred to as the dynamic range of an image.

It is important to recognize that the bit resolution of an image does not necessarily

correspond to the resolution of the originating imaging system. A common feature ofmany

cameras is automatic gain, in which the minimum andmaximum responses over the image

field are sensed and this range is automatically divided into a convenient number of bits (i.e.

digitized into N levels). In such a case, the bit resolution of the image is typically less than

that which is, in principle, achievable by the device.

By contrast, the blind, unadjusted conversion of an analog signal into a given number of

bits, for instance 216¼ 65 536 discrete levels, does not, of course, imply that the true

resolution of the imaging device as a whole is actually 16 bits. This is because the overall level

of noise (i.e. random fluctuation) in the sensor and in the subsequent processing chain may

be of a magnitude which easily exceeds a single digital level. The sensitivity of an imaging

system is thus fundamentally determined by the noise, and this makes noise a key factor in

determining the number of quantization levels used for digitization. There is no point in

digitizing an image to a high number of bits if the level of noise present in the image sensor

does not warrant it.

1.2.1 Bit-plane splicing

The visual significance of individual pixel bits in an image can be assessed in a subjective but

useful manner by the technique of bit-plane splicing.

To illustrate the concept, imagine an 8-bit image which allows integer values from 0 to

255. This can be conceptually divided into eight separate image planes, each corresponding

4 CH 1 REPRESENTATION



Figure 1.3 An example of bit-plane slicing a grey-scale image

to the values of a given bit across all of the image pixels. The first bit plane comprises the first

and most significant bit of information (intensity¼ 128), the second, the second most

significant bit (intensity¼ 64) and so on. Displaying each of the bit planes in succession, we

may discern whether there is any visible structure in them.

In Figure 1.3, we show the bit planes of an 8-bit grey-scale image of a car tyre descending

from the most significant bit to the least significant bit. It is apparent that the two or three

least significant bits do not encode much useful visual information (it is, in fact, mostly

noise). The sequence of images on the right in Figure 1.3 shows the effect on the original

image of successively setting the bit planes to zero (from the first andmost significant to the

least significant). In a similar fashion, we see that these last bits do not appear to encode any

visible structure. In this specific case, therefore, we may expect that retaining only the five

most significant bits will produce an image which is practically visually identical to the

original. Such analysis could lead us to amore efficientmethod of encoding the image using

fewer bits – a method of image compression. We will discuss this next as part of our

examination of image storage formats.

1.3 Image formats

From amathematical viewpoint, anymeaningful 2-D array of numbers can be considered

as an image. In the real world, we need to effectively display images, store them (preferably

1.3 IMAGE FORMATS 5



compactly), transmit them over networks and recognize bodies of numerical data as

corresponding to images. This has led to the development of standard digital image

formats. In simple terms, the image formats comprise a file header (containing informa-

tion on how exactly the image data is stored) and the actual numeric pixel values

themselves. There are a large number of recognized image formats now existing, dating

back over more than 30 years of digital image storage. Some of the most common 2-D

image formats are listed in Table 1.1. The concepts of lossy and lossless compression are

detailed in Section 1.3.2.

As suggested by the properties listed in Table 1.1, different image formats are generally

suitable for different applications. GIF images are a very basic image storage format limited

to only 256 grey levels or colours, with the latter defined via a colourmap in the file header as

discussed previously. By contrast, the commonplace JPEG format is capable of storing up to

a 24-bit RGB colour image, and up to 36 bits for medical/scientific imaging applications,

and ismost widely used for consumer-level imaging such as digital cameras. Other common

formats encountered include the basic bitmap format (BMP), originating in the develop-

ment of the Microsoft Windows operating system, and the new PNG format, designed as a

more powerful replacement for GIF. TIFF, tagged image file format, represents an

overarching and adaptable file format capable of storing a wide range of different image

data forms. In general, photographic-type images are better suited towards JPEG or TIF

storage, whilst images of limited colour/detail (e.g. logos, line drawings, text) are best suited

to GIF or PNG (as per TIFF), as a lossless, full-colour format, is adaptable to the majority of

image storage requirements.

1.3.1 Image data types

The choice of image format used can be largely determined by not just the image contents,

but also the actual image data type that is required for storage. In addition to the bit

resolution of a given image discussed earlier, a number of distinct image types also exist:

. Binary images are 2-D arrays that assign one numerical value from the set f0; 1g to each
pixel in the image. These are sometimes referred to as logical images: black corresponds

Table 1.1 Common image formats and their associated properties

Acronym Name Properties

GIF Graphics interchange format Limited to only 256 colours (8-bit); lossless

compression

JPEG Joint Photographic Experts Group In most common use today; lossy

compression; lossless variants exist

BMP Bit map picture Basic image format; limited (generally)

lossless compression; lossy variants exist

PNG Portable network graphics New lossless compression format; designed

to replace GIF

TIF/TIFF Tagged image (file) format Highly flexible, detailed and adaptable

format; compressed/uncompressed variants

exist

6 CH 1 REPRESENTATION



to zero (an ‘off’ or ‘background’ pixel) and white corresponds to one (an ‘on’ or

‘foreground’ pixel). As no other values are permissible, these images can be represented

as a simple bit-stream, but in practice they are represented as 8-bit integer images in the

common image formats. A fax (or facsimile) image is an example of a binary image.

. Intensity or grey-scale images are 2-D arrays that assign one numerical value to each

pixel which is representative of the intensity at this point. As discussed previously, the

pixel value range is bounded by the bit resolution of the image and such images are

stored as N-bit integer images with a given format.

. RGB or true-colour images are 3-D arrays that assign three numerical values to each

pixel, each value corresponding to the red, green and blue (RGB) image channel

component respectively. Conceptually, we may consider them as three distinct, 2-D

planes so that they are of dimension C by R by 3, where R is the number of image rows

and C the number of image columns. Commonly, such images are stored as sequential

integers in successive channel order (e.g. R0G0B0, R1G1B1, . . .) which are then accessed

(as in Matlab) by IðC;R; channelÞ coordinates within the 3-D array. Other colour

representations which we will discuss later are similarly stored using the 3-D array

concept, which can also be extended (starting numerically from 1withMatlab arrays) to

four or more dimensions to accommodate additional image information, such as an

alpha (transparency) channel (as in the case of PNG format images).

. Floating-point images differ from the other image types we have discussed. By defini-

tion, they do not store integer colour values. Instead, they store a floating-point number

which, within a given range defined by the floating-point precision of the image bit-

resolution, represents the intensity. They may (commonly) represent a measurement

value other than simple intensity or colour as part of a scientific or medical image.

Floating point images are commonly stored in the TIFF image format or a more

specialized, domain-specific format (e.g. medical DICOM). Although the use of

floating-point images is increasing through the use of high dynamic range and stereo

photography, file formats supporting their storage currently remain limited.

Figure 1.4 shows an example of the different image data types we discuss with an example

of a suitable image format used for storage. Although the majority of images we will

encounter in this text will be of integer data types, Matlab, as a general matrix-based data

analysis tool, can of course be used to process floating-point image data.

1.3.2 Image compression

The other main consideration in choosing an image storage format is compression. Whilst

compressing an image can mean it takes up less disk storage and can be transferred over a

network in less time, several compression techniques in use exploit what is known as lossy

compression.Lossycompressionoperatesbyremovingredundant informationfromthe image.

As the example of bit-plane slicing in Section 1.2.1 (Figure 1.3) shows, it is possible to

remove some information from an image without any apparent change in its visual

1.3 IMAGE FORMATS 7



appearance. Essentially, if such information is visually redundant then its transmission is

unnecessary for appreciation of the image. The formof the information that can be removed

is essentially twofold. Itmay be in terms of fine image detail (as in the bit-slicing example) or

it may be through a reduction in the number of colours/grey levels in a way that is not

detectable by the human eye.

Some of the image formats we have presented, store the data in such a compressed form

(Table 1.1). Storage of an image in one of the compressed formats employs various

algorithmic procedures to reduce the raw image data to an equivalent image which appears

identical (or at least nearly) but requires less storage. It is important to distinguish between

compressionwhich allows the original image to be reconstructed perfectly from the reduced

data without any loss of image information (lossless compression) and so-called lossy

compression techniques which reduce the storage volume (sometimes dramatically) at

the expense of some loss of detail in the original image as shown in Figure 1.5, the lossless

and lossy compression techniques used in common image formats can significantly reduce

the amount of image information that needs to be stored, but in the case of lossy

compression this can lead to a significant reduction in image quality.

Lossy compression is also commonly used in video storage due to the even larger volume

of source data associated with a large sequence of image frames. This loss of information,

itself a form of noise introduced into the image as compression artefacts, can limit the

effectiveness of later image enhancement and analysis.

Figure 1.4 Examples of different image types and their associated storage formats

8 CH 1 REPRESENTATION



In terms of practical image processing inMatlab, it should be noted that an imagewritten

to file fromMatlab in a lossy compression format (e.g. JPEG) will not be stored as the exact

Matlab image representation it started as. Image pixel values will be altered in the image

output process as a result of the lossy compression. This is not the case if a lossless

compression technique is employed.

An interesting Matlab exercise is posed for the reader in Exercise 1.4 to illustrate this

difference between storage in JPEG and PNG file formats.

1.4 Colour spaces

Aswasbrieflymentioned inour earlier discussionof image types, the representationof colours

in an image is achievedusing a combinationofoneormore colour channels that are combined

to form the colour used in the image.The representationweuse to store the colours, specifying

the number and nature of the colour channels, is generally known as the colour space.

Considered as a mathematical entity, an image is really only a spatially organized set of

numbers with each pixel location addressed as IðC;RÞ. Grey-scale (intensity) or binary

images are 2-D arrays that assign one numerical value to each pixel which is representative of

Figure 1.5 Example image compressed using lossless and varying levels of lossy compression (See

colour plate section for colour version)

1.4 COLOUR SPACES 9



Figure 1.6 Colour RGB image separated into its red (R), green (G) and blue (B) colour channels (See

colour plate section for colour version)

the intensity at that point. They use a single-channel colour space that is either limited to a

2-bit (binary) or intensity (grey-scale) colour space. By contrast, RGB or true-colour images

are 3-D arrays that assign three numerical values to each pixel, each value corresponding to

the red, green and blue component respectively.

1.4.1 RGB

RGB (or true colour) images are 3-D arrays that we may consider conceptually as three

distinct 2-D planes, one corresponding to each of the three red (R), green (G) and blue (B)

colour channels. RGB is the most common colour space used for digital image representa-

tion as it conveniently corresponds to the three primary colours which aremixed for display

on a monitor or similar device.

We can easily separate and view the red, green and blue components of a true-colour

image, as shown in Figure 1.6. It is important to note that the colours typically present in a

real image are nearly always a blend of colour components from all three channels. A

common misconception is that, for example, items that are perceived as blue will only

appear in the blue channel and so forth. Whilst items perceived as blue will certainly appear

brightest in the blue channel (i.e. they will contain more blue light than the other colours)

they will also have milder components of red and green.

If we consider all the colours that can be representedwithin the RGB representation, then

we appreciate that the RGB colour space is essentially a 3-D colour space (cube) with axes R,

G and B (Figure 1.7). Each axis has the same range 0! 1 (this is scaled to 0–255 for the

common1byte per colour channel, 24-bit image representation). The colour black occupies

the origin of the cube (position ð0; 0; 0Þ), corresponding to the absence of all three colours;
white occupies the opposite corner (position ð1; 1; 1Þ), indicating themaximum amount of

all three colours. All other colours in the spectrum lie within this cube.

The RGB colour space is based upon the portion of the electromagnetic spectrum visible

to humans (i.e. the continuous range of wavelengths in the approximate range

10 CH 1 REPRESENTATION



Figure 1.7 An illustration of RGB colour space as a 3-D cube (See colour plate section for colour version)

400–700 nm). The human eye has three different types of colour receptor over which it has

limited (and nonuniform) absorbency for each of the red, green and blue wavelengths. This

is why, as we will see later, the colour to grey-scale transform uses a nonlinear combination

of the RGB channels.

In digital image processing we use a simplified RGB colour model (based on the CIE

colour standard of 1931) that is optimized and standardized towards graphical displays.

However, the primary problem with RGB is that it is perceptually nonlinear. By this we

mean that moving in a given direction in the RGB colour cube (Figure 1.7) does not

necessarily produce a colour that is perceptually consistent with the change in each of the

channels. For example, starting at white and subtracting the blue component produces

yellow; similarly, starting at red and adding the blue component produces pink. For this

reason, RGB space is inherently difficult for humans to work with and reason about because

it is not related to the natural way we perceive colours. As an alternative we may use

perceptual colour representations such as HSV.

1.4.1.1 RGB to grey-scale image conversion
We can convert from an RGB colour space to a grey-scale image using a simple transform.

Grey-scale conversion is the initial step in many image analysis algorithms, as it essentially

simplifies (i.e. reduces) the amount of information in the image. Although a grey-scale

image contains less information than a colour image, the majority of important, feature-

related information is maintained, such as edges, regions, blobs, junctions and so on.

Feature detection and processing algorithms then typically operate on the converted grey-

scale version of the image. As we can see from Figure 1.8, it is still possible to distinguish

between the red and green apples in grey-scale.

An RGB colour image, Icolour, is converted to grey scale, Igrey-scale, using the following

transformation:

Igrey-scaleðn;mÞ ¼ aIcolourðn;m; rÞþbIcolourðn;m; gÞþ gIcolourðn;m; bÞ ð1:1Þ

1.4 COLOUR SPACES 11



Figure 1.8 An example of RGB colour image (left) to grey-scale image (right) conversion (See colour

plate section for colour version)

where ðn;mÞ indexes an individual pixel within the grey-scale image and ðn;m; cÞ the

individual channel at pixel location ðn;mÞ in the colour image for channel c in the red r, blue

b and green g image channels. As is apparent from Equation (1.1), the grey-scale image is

essentially a weighted sum of the red, green and blue colour channels. The weighting

coefficients (a,b and g) are set in proportion to the perceptual response of the human eye to

each of the red, green and blue colour channels and a standardized weighting ensures

uniformity (NTSC television standard,a¼ 0.2989,b¼ 0.5870 and g ¼ 0.1140). The human

eye is naturally more sensitive to red and green light; hence, these colours are given higher

weightings to ensure that the relative intensity balance in the resulting grey-scale image is

similar to that of the RGB colour image. An example of performing a grey-scale conversion

in Matlab is given in Example 1.6.

RGB to grey-scale conversion is a noninvertible image transform: the true colour

information that is lost in the conversion cannot be readily recovered.

1.4.2 Perceptual colour space

Perceptual colour space is an alternative way of representing true colour images in amanner

that is more natural to the human perception and understanding of colour than the RGB

representation. Many alternative colour representations exist, but here we concentrate on

the Hue, Saturation and Value (HSV) colour space popular in image analysis applications.

Changes within this colour space follow a perceptually acceptable colour gradient. From

an image analysis perspective, it allows the separation of colour from lighting to a greater

degree. An RGB image can be transformed into an HSV colour space representation as

shown in Figure 1.9.

Each of these three parameters can be interpreted as follows:

. H (hue) is the dominant wavelength of the colour, e.g. red, blue, green

. S (saturation) is the ‘purity’ of colour (in the sense of the amount of white light mixed

with it)

. V (value) is the brightness of the colour (also known as luminance).

12 CH 1 REPRESENTATION



The HSV representation of a 2-D image is also as a 3-D array comprising three channels

ðh; s; vÞ and each pixel location within the image, Iðn;mÞ, contains an ðh; s; vÞ triplet

that can be transformed back into RGB for true-colour display. In the Matlab HSV

implementation each of h, s and v are bounded within the range 0! 1. For example, a

blue hue (top of cone, Figure 1.9) may have a value of h¼ 0.9, a saturation of s¼ 0.5 and a

value v¼ 1 making it a vibrant, bright sky-blue.

By examining the individual colour channels of images in the HSV space, we can see

that image objects are more consistently contained in the resulting hue field than in the

channels of the RGB representation, despite the presence of varying lighting conditions

over the scene (Figure 1.10). As a result, HSV space is commonly used for colour-based

Figure 1.9 HSV colour space as a 3-D cone (See colour plate section for colour version)

Figure 1.10 Image transformed and displayed in HSV colour space (See colour plate section for colour

version)

1.4 COLOUR SPACES 13



image segmentation using a technique known as colour slicing. A portion of the hue

colour wheel (a slice of the cone, Figure 1.9) is isolated as the colour range of interest,

allowing objects within that colour range to be identified within the image. This ease of

colour selection in HSV colour space also results in its widespread use as the preferred

method of colour selection in computer graphical interfaces and as a method of adding

false colour to images (Section 1.1.2).

Details of RGB to HSV image conversion in Matlab are given in Exercise 1.6.

1.5 Images in Matlab

Having introduced the basics of image representation, we now turn to the practical

aspect of this book to investigate the initial stages of image manipulation using Matlab.

These are presented as a number of worked examples and further exercises for the

reader.

1.5.1 Reading, writing and querying images

Reading and writing images is accomplished very simply via the imread and imwrite

functions. These functions support all of the most common image formats and create/

export the appropriate 2-D/3-D image arrays within theMatlab environment. The function

imfinfo can be used to query an image and establish all its important properties, including

its type, format, size and bit depth.

Example 1.1

Matlab code What is happening?

imfinfo(‘cameraman.tif ’) %Query the cameraman image that

%is available with Matlab

%imfinfo provides information

%ColorType is gray-scale, width is 256 . . . etc.

I1¼imread(‘cameraman.tif ’); %Read in the TIF format cameraman image

imwrite(I1,’cameraman.jpg’,’jpg’); %Write the resulting array I1 to

%disk as a JPEG image

imfinfo(‘cameraman.jpg’) %Query the resulting disk image

%Note changes in storage size, etc.

Comments

. Matlab functions: imread, imwrite and iminfo.

. Note the change in file size when the image is stored as a JPEG image. This is due to the

(lossy) compression used by the JPEG image format.

14 CH 1 REPRESENTATION



1.5.2 Basic display of images

Matlab provides two basic functions for image display: imshow and imagesc. Whilst

imshow requires that the 2-D array specified for display conforms to an image data type

(e.g. intensity/colour images with value range 0–1 or 0–255), imagesc accepts input

arrays of any Matlab storage type (uint 8, uint 16 or double) and any numerical range.

This latter function then scales the input range of the data and displays it using the

current/default colour map. We can additionally control this display feature using the

colormap function.

Example 1.2

Matlab code What is happening?

A¼imread(‘cameraman.tif ’); %Read in intensity image

imshow(A); %First display image using imshow

imagesc(A); %Next display image using imagesc

axis image; %Correct aspect ratio of displayed image

axis off; %Turn off the axis labelling

colormap(gray); %Display intensity image in grey scale

Comments

. Matlab functions: imshow, imagesc and colormap.

. Note additional steps required when using imagesc to display conventional images.

In order to show the difference between the two functions we now attempt the display of

unconstrained image data.

Example 1.3

Matlab code What is happening?

B¼rand(256).�1000; %Generate random image array in range 0–1000

imshow(B); %Poor contrast results using imshow because data

%exceeds expected range

imagesc(B); %imagesc automatically scales colourmap to data

axis image; axis off; %range

colormap(gray); colorbar;

imshow(B,[0 1000]); %But if we specify range of data explicitly then

%imshow also displays correct image contrast

Comments

. Note the automatic display scaling of imagesc.

1.5 IMAGES IN MATLAB 15



If we wish to display multiple images together, this is best achieved by the subplot

function. This function creates a mosaic of axes into which multiple images or plots can be

displayed.

Example 1.4

Matlab code What is happening?

B¼imread(‘cell.tif ’); %Read in 8-bit intensity image of cell

C¼imread(‘spine.tif ’); %Read in 8-bit intensity image of spine

D¼imread(‘onion.png’); %Read in 8-bit colour image

subplot(3,1,1); imagesc(B); axis image; %Creates a 3� 1 mosaic of plots

axis off; colormap(gray); %and display first image

subplot(3,1,2); imagesc(C); axis image; %Display second image

axis off; colormap(jet); %Set colourmap to jet (false colour)

subplot(3,1,3); imshow(D); %Display third (colour) image

Comments

. Note the specification of different colour maps using imagesc and the combined

display using both imagesc and imshow.

1.5.3 Accessing pixel values

Matlab also contains a built-in interactive image viewer which can be launched using the

imview function. Its purpose is slightly different from the other two: it is a graphical, image

viewer which is intended primarily for the inspection of images and sub-regions within

them.

Example 1.5

Matlab code What is happening?

B¼imread(‘cell.tif ’); %Read in 8-bit intensity image of cell

imview(B); %Examine grey-scale image in interactive viewer

D¼imread(‘onion.png’); %Read in 8-bit colour image.

imview(B); %Examine RGB image in interactive viewer

B(25,50) %Print pixel value at location (25,50)

B(25,50)¼255; %Set pixel value at (25,50) to white

imshow(B); %View resulting changes in image

D(25,50,:) %Print RGB pixel value at location (25,50)

D(25,50, 1) %Print only the red value at (25,50)

16 CH 1 REPRESENTATION



D(25,50,:)¼(255, 255, 255); %Set pixel value to RGB white

imshow(D); %View resulting changes in image

Comments

. Matlab functions: imview.

. Note how we can access individual pixel values within the image and change their

value.

1.5.4 Converting image types

Matlab also contains built in functions for converting different image types. Here, we

examine conversion to grey scale and the display of individual RGB colour channels from an

image.

Example 1.6

Matlab code What is happening?

D¼imread(‘onion.png’); %Read in 8-bit RGB colour image

Dgray¼rgb2gray(D); %Convert it to a grey-scale image

subplot(2,1,1); imshow(D); axis image; %Display both side by side

subplot(2,1,2); imshow(Dgray);

Comments

. Matlab functions: rgb2gray.

. Note how the resulting grayscale image array is 2-D while the originating colour

image array was 3-D.

Example 1.7

Matlab code What is happening?

D¼imread(‘onion.png’); %Read in 8-bit RGB colour image.

Dred¼D(:,:,1); %Extract red channel (first channel)

Dgreen¼D(:,:,2); %Extract green channel (second channel)

Dblue¼D(:,:,3); %Extract blue channel (third channel)

subplot(2,2,1); imshow(D); axis image; %Display all in 2� 2 plot

subplot(2,2,2); imshow(Dred); title(‘red’); %Display and label

subplot(2,2,3); imshow(Dgreen); title(‘green’);

subplot(2,2,4); imshow(Dblue); title(‘blue’);

Comments

. Note how we can access individual channels of an RGB image and extract them as separate

images in their own right.

1.5 IMAGES IN MATLAB 17



Exercises

The following exercises are designed to reinforce and develop the concepts and Matlab

examples introduced in this chapter

Matlab functions: imabsdiff, rgb2hsv.

Exercise 1.1 Using the examples presented for displaying an image in Matlab together

with those for accessing pixel locations, investigate adding and subtracting a scalar value

from an individual location, i.e. Iði; jÞ ¼ Iði; jÞþ 25 or Iði; jÞ ¼ Iði; jÞ�25. Start by using the

grey-scale ‘cell.tif’ example image and pixel location ð100; 20Þ.What is the effect on the grey-

scale colour of adding and subtracting?

Expand your technique to RGB colour images by adding and subtracting to all three of

the colour channels in a suitable example image. Also try just adding to one of the individual

colour channels whilst leaving the others unchanged. What is the effect on the pixel colour

of each of these operations?

Exercise 1.2 Based on your answer to Exercise 1.1, use the for construct inMatlab (see help

for at theMatlab command prompt) to loop over all the pixels in the image and brighten or

darken the image.

Youwill need to ensure that your program does not try to create a pixel value that is larger

or smaller than the pixel canhold. For instance, an 8-bit image can only hold the values 0–255

at each pixel location and similarly for each colour channel for a 24-bit RGB colour image.

Exercise 1.3 Using the grey-scale ‘cell.tif’ example image, investigate using different false

colour maps to display the image. TheMatlab function colormap can take a range of values

to specify different false colour maps: enter help graph3d and look under the Color maps

heading to get a full list. What different aspects and details of the image can be seen using

these false colourings in place of the conventional grey-scale display?

False colour maps can also be specified numerically as parameters to the colormap

command: enter help colormap for further details.

Exercise 1.4 Load an example image into Matlab and using the functions introduced in

Example 1.1 save it once as a JPEG format file (e.g. sample.jpg) and once as a PNG format

image (e.g. sample.png). Next, reload the images from both of these saved files as new

images in Matlab, ‘Ijpg’ and ‘Ipng’.

We may expect these two images to be exactly the same, as they started out as the same

image andwere just saved in different image file formats. If we compare them by subtracting

one from the other and taking the absolute difference at each pixel location we can check

whether this assumption is correct.

Use the imabsdiff Matlab command to create a difference image between ‘Ijpg’ and

‘Ipng’. Display the resulting image using imagesc.

The difference between these two images is not all zeros as one may expect, but a noise

pattern related to the difference in the images introduced by saving in a lossy compression

format (i.e. JPEG) and a lossless compression format (i.e. PNG). The differencewe see is due

18 CH 1 REPRESENTATION



to the image information removed in the JPEG version of the file which is not apparent to us

when we look at the image. Interestingly, if we view the difference image with imshow all we

see is a black image because the differences are so small they have very low (i.e. dark) pixel

values. The automatic scaling and false colour mapping of imagesc allows us to visualize

these low pixel values.

Exercise 1.5 Implement a program to perform the bit-slicing technique described in

Section 1.2.1 and extract/display the resulting plane images (Figure 1.3) as separate Matlab

images.

You may wish to consider displaying a mosaic of several different bit-planes from an

image using the subplot function.

Exercise 1.6 Using theMatlab rgb2hsv function, write a program to display the individual

hue, saturation and value channels of a given RGB colour image. You may wish to refer to

Example 1.6 on the display of individual red, green and blue channels.

For further examples and exercises see http://www.fundipbook.com

EXERCISES 19




